

ICJR Pan Pacific Hilton Waikoloa Village Resort Hawaii July 7, 2014



IISRE

OPTIMIZING MODULAR TAPERS FOR TOTAL HIP ARTHROPLASTY

Timothy McTighe, Dr. H.S. (hc)
Executive Director,
Joint Implant Surgery & Research
Foundation (JISRF)

All tapers are not equal in design or function.

JISRF is a 501 c3 Non-Profit Foundation (1971) By Prof. Charles O. Bechtol, MD

JISRF is dependent on outside funding to support many of its activities.

Since 1971 JISRF has received funding from +30 commercial affiliations.

JISRF has stock investments in a number of commercial affiliations.

Executive Director: McTighe has vested interest in:

CDD, LLC; J&J; Signature Orthopaedics, Ltd; Omnilife; and has royalty interest in CDD, LLC

Note: JISRF Board Members and Advisors have multiple commercial relationships.

Intent

To make JISRF available as a resource to all within the orthopaedic community. www.jisrf.org

DISCLOSURE

ISSUES WITH SELF-LOCKING TAPERS

A self-locking taper (Morse) works by producing a frictional force that holds the components together and is greater than the forces pushing the components apart.

The frictional force resists torsional and axial forces created at the modular junction, while careful tolerancing provides optimal contact along the length of the taper. The success of a self-locking taper is influenced by the design of the taper, particularly the taper angle, the roughness, and the mating materials between the "male" and "female" components.

Head / Neck Sleeve

Stem / Sleeve

Types of self-locking tapers

In the last two decades, manufacturers have been altering femoral stem trunnions from various tapers such as 14/16 to 12/14. The original 12/14 Ceramtec taper was at one time referred to as a Euro taper, meaning a 12/14 off-the-shelf Ceramtec Taper.

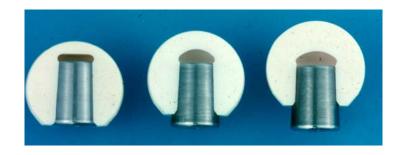
This term was not trademarked, and some companies began altering the manufacturing tolerance as originally produce from Ceramtec. The term Euro taper still is referred to by most in Europe as an off-the-shelf 12/14 Ceramtec taper.

A 12/14 taper can have slightly different manufacturing tolerances by different manufactures and should not be used as a generic term.

Demand for Head/Neck Adjustment

Tapers have been reduced in diameter and length compromising optimal stability of the taper interface.

Corrosion
Growing Concern


HISTORICAL REFERENCE TO HEAD TAPERS

First C.C. head on a Titanium stem 11/13 taper (Preassembled in factory)

Mittelmeier Hip Ceramic 14/16 taper

AML Fixed Head 14/16 12/14 1970s 1980s 1990s

All 12/14 tapers are not equal! (A Euro 12/14 taper is different than a ASTM 12/14 taper F1636)

Know what you are working with!

Modular Heads came about during the 1960s

Trends

Large Heads
Increased Femoral Offset
Metal on Metal

All increase torque moment at implant interface!

8% increase (torque) per 1 mm in true lateral ball-center offset.

6% increase (torque)

Per 1 mm increase in neck-length increase.

Offset	Neck Length	Nm	R
35mm	49.50mm	84	45°
40mm	56.58mm	96	(135°)
45mm	63.65mm	108	Ball
50mm	70.72mm	120	Center 45°
55mm	77.79mm	132	N/L

TORSION IS OUR BIGGEST PROBLEM!

Large Head Diameter High offsets Metal on Metal Reduced taper contact

Increases torsional loads

11mm of 12/14	Contact length Offset (S)	Contact length Offset (M)	Contact length Offset (L)	Contact length Offset (XL)
28mm	10.5mm	10.5mm	10.3mm	
32mm	10.5mm	10.5mm	10.5mm	8.8mm
36mm	10.5mm	10.5mm	10.5mm	9.2mm
40mm	10.5mm	10.5mm	10.5mm	9mm

INCREASED DEMAND ON TAPERS

NEW S-ROM TAPER 9/10

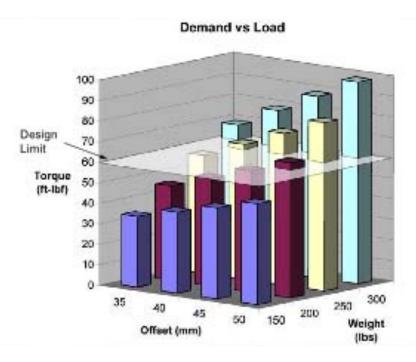
RANGE OF MOTION (COMPARISON TABLE)

STEM MANUFACTURER	HEAD DIAMETER	RANGE OF MOTION
Versys	22mm	125deg
	26mm	133deg
	28mm	136deg
Aesculap	28mm	134deg
	28mm	118deg
Def inition	22mm	124deg
	26mm	131deg
S-Rom 11/13 Taper	22mm	116deg
	28mm	125deg
NEWS-Rom A 9/10 Tape	22mm	126deg
	28mm	145deg

Marketing Pressure often overrides sound engineering principals

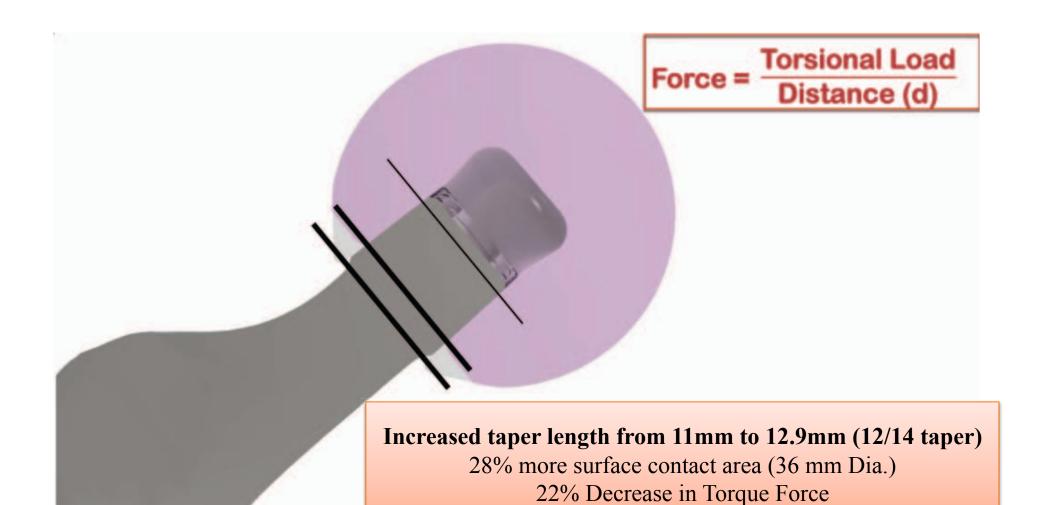
S-ROM Slide from:

1984 Future Design Leader in Cementless THA


S-ROM® STEM SLEEVE EVOLUTION

Less We Forget to Remember our History 250 lbs. patient w /50 mm femoral offset generates close to 80 ft-lbs of torque. taper safety is 60 ft-lbs

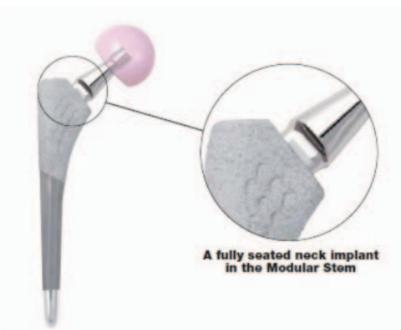
Examples



MANY TAPERS DO NOT HAVE ENOUGH INTRINSIC STABILITY FOR TODAY'S HIGH DEMAND PATIENT

ADVANCED TAPER SOLUTION

PATENT PENDING



36mm head dia.	11mm 12/14 Taper	12.9mm 12/14 Taper	Loss
Flexion/Extension	199°	192°	7°
Abduction/Adduction	133°	130°	3°
Internal/External	210°	205°	5°

THEORETICAL DOWNSIDE OF ADVANCED TAPER DESIGN

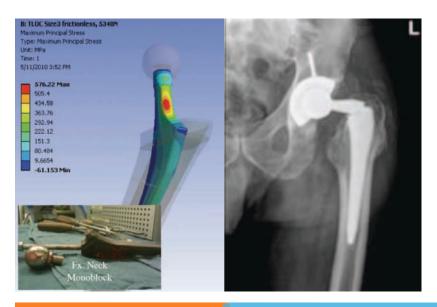
Market went from "Taper Mad" to "Taper Bad"

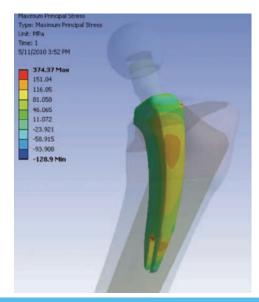
Overly Concerned with Fatigue Levels Ignored fretting issues (shot peened taper & reduced taper engagement)

Fretting Corrosion

Retrieved Rejuvenate Stem (Stryker Orthopaedics) with Modular Neck Demonstrating Significant Fretting Corrosion. Revised for pseudo tumor

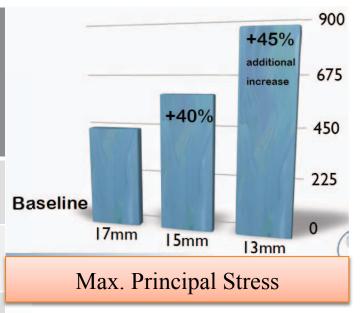
Courtesy of Dartmouth Biomedical Center

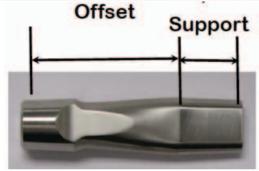




NECK STEM TAPER JUNCTIONS

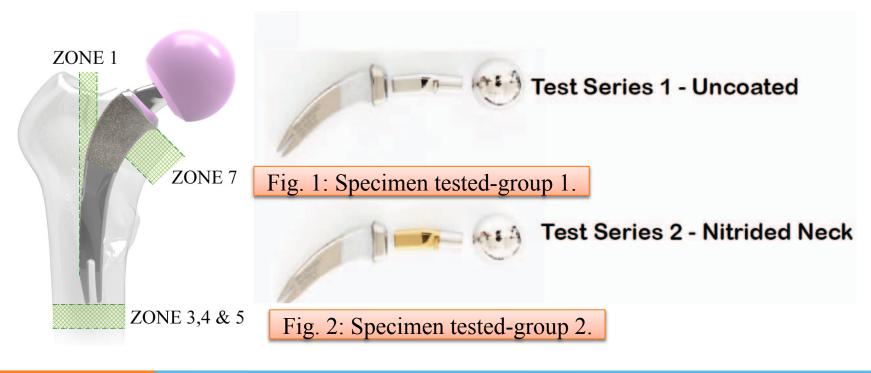
PROBLEM FATIGUE FAILURE OF FEMORAL NECKS OCCURS IN BOTH MODULAR AND MONOBLOCK DESIGNS




The maximum principal tensile stress in the neck retained stem was 35% less than that of the monoblock design.

Solution for fatigue failure of necks change material from titanium to Cobalt Chrome and change design to retain femoral neck.

	Taper Support	Femoral Offset	% Increase head center length
TSI TM / ARC TM	17mm	27.5mm	
Wright Medical	15mm	42mm	55%
Stryker	13mm	42mm	53%


•Shorter Bending Moment and Shorter Torsional Moment with Neck Retention results in less stress at modular implant interface.

NOT ALL TAPERS ARE CREATED EQUALLY

ISO7206-6 SETUP 5340N - 10 MILLION CYCLES MEASURED ABRASIVE WEAR

Beyond Compliance

Specime n	Mean initial weight [g]	Mean post- fatigue weight [g]	Weight loss [mg]
1.1	37.6202	37.5408	79.4
1.2	37.5002	37.6172	-117.0 ¹
1.3	37.5419	37.4981	43.9
2.1	37.6659	37.6649	1.0
2.2	37.5203	37.5191	1.2
2.3	37.5404	37.5390	1.4

Specimen 1.

Specimen 2.

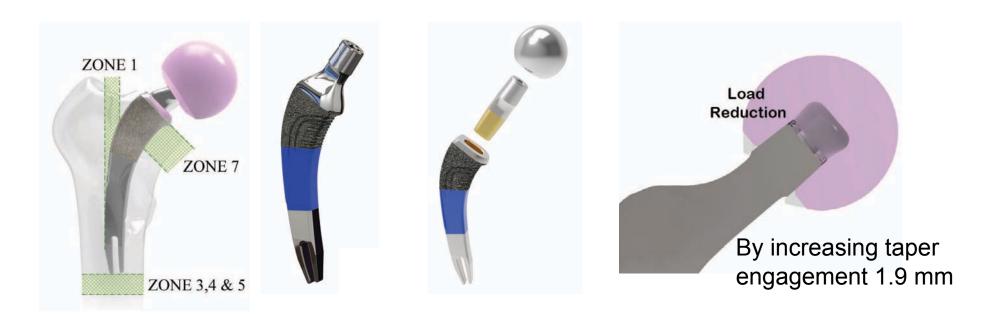
The fretting wear for both types of systems is illustrated. Significant reduction in Tin coated.

The TiN coated necks showed significantly less fretting wear when tesed under the same load conditions.

A second series of TiN coated samples were tested these were fully TiN coated necks to include the head / neck

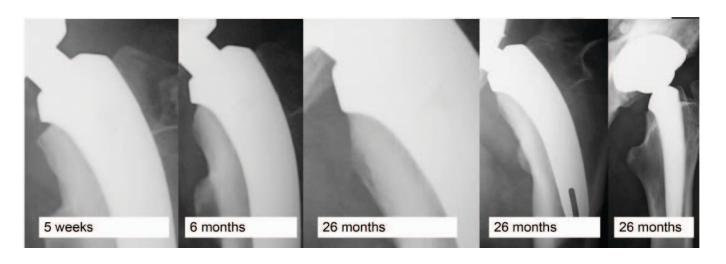
junction.

Fig. 8: Representative photograph of the surfaces of the neck post fatigue - specimen 1.1


Mean post-fatigue

CONCLUSION: TIN COATING NECKS SIGNIFICANTLY REDUCES WEAR COMPARED TO UNCOATED. THERE WAS NO SIGNIFICANT DIFFERENCE FOUND BETWEEN FULLY TIN COATED NECKS AND PARTIALLY COATED NECKS.

Significant advantage in reducing wear of C.C modular neck interfacing with titanium stem.



Increased taper engagement reduces stress thus reducing corrosion / debris generation.

Neck Retention design results in lower stress due to combined shorter offset with larger taper engagement. Tin coating of modular C.C. necks in a titanium stem reduces wear compared to uncoated necks.

CLINICAL EXPERIENCE

Positive bone remodeling increased calcar density 2,825 USA / ARC™ Stems implanted since April 2010 98.6% survival

2 reported pseudo tumors both w / MoM bearings (1 AU & 1 USA)

Short Curved Neck Preserving Stem

Modular Junctions

Not all taper junctions are designed or function equally

Know your design

Know required technique

Know design & material limits

Demand beyond compliance testing

Sound engineering principals work

Incremental advancement in technology works

Modularity can be designed and fabricated safely

CONCLUSION

WWW.JISRF.ORG